On proper coverings of Artin stacks
نویسنده
چکیده
We prove that every separated Artin stack of finite type over a noetherian base scheme admits a proper covering by a quasi–projective scheme. An application of this result is a version of the Grothendieck existence theorem for Artin stacks.
منابع مشابه
The L-functions of Witt coverings
Results on L-functions of Artin-Schreier coverings by Dwork, Bombieri and AdolphsonSperber are generalized to L-functions of Witt coverings.
متن کاملHom–stacks and Restriction of Scalars
Fix an algebraic space S, and let X and Y be separated Artin stacks of finite presentation over S with finite diagonals (over S). We define a stack HomS(X ,Y) classifying morphisms between X and Y. Assume that X is proper and flat over S, and fppf–locally on S there exists a finite finitely presented flat cover Z → X with Z an algebraic space. Then we show that HomS(X ,Y) is an Artin stack with...
متن کاملOn the Local Quotient Structure of Artin Stacks
We show that near closed points with linearly reductive stabilizer, Artin stacks are formally locally quotient stacks by the stabilizer and conjecture that the statement holds étale locally. In particular, we prove that if the stabilizer of a point is linearly reductive, the stabilizer acts algebraically on a miniversal deformation space generalizing results of Pinkham and Rim.
متن کاملCanonical Artin Stacks over Log Smooth Schemes
We develop a theory of toric Artin stacks extending the theories of toric Deligne-Mumford stacks developed by Borisov-Chen-Smith, Fantechi-Mann-Nironi, and Iwanari. We also generalize the Chevalley-Shephard-Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding X is canonically the good moduli space (in the...
متن کاملGood Moduli Spaces for Artin Stacks
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
متن کامل